If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4w^2+33w-35=0
a = -4; b = 33; c = -35;
Δ = b2-4ac
Δ = 332-4·(-4)·(-35)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-23}{2*-4}=\frac{-56}{-8} =+7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+23}{2*-4}=\frac{-10}{-8} =1+1/4 $
| 2a×3×=25 | | 3x–1.5=3 | | 3x+8=12–2x | | 42=16v-9v | | 4x-3+x+41=180 | | -12b-10=-6b-14 | | 12500=8000(1+i) | | (n^2+n)/2=5050 | | (n^2+n)/2=5051 | | 4m-3=2m+27 | | x/7=3.1 | | 3y+6=36-3y | | (n^2+n)/2=1225 | | 3r=60-r | | -18b-10=-14 | | (n^2+n)/2=130000 | | (n^2+n)/2=140000 | | (n^2+n)/2=105 | | (n^2+n)/2=66 | | 2n=140 | | 5(k-12)=9*10 | | 8(2b3)=16b24 | | 8+-3t=2 | | 2(q+11)=5*6 | | 2(t+5)=7*10 | | 2(k-11)=6*7 | | 6(k-5)=18*11 | | 2(r+2)=8*3 | | 3(x-9)=2*12 | | x+0.7=1.2 | | 3/4-5=4x(1/8) | | -4x+18-9x=6-7x |